Erratum to: The complex case of EHRs: examining the factors impacting the EHR user experience.
Author(s): Tutty, Michael A, Carlasare, Lindsey E, Lloyd, Stacy, Sinsky, Christine A
DOI: 10.1093/jamia/ocz129
Author(s): Tutty, Michael A, Carlasare, Lindsey E, Lloyd, Stacy, Sinsky, Christine A
DOI: 10.1093/jamia/ocz129
Cohort selection for clinical trials is a key step for clinical research. We proposed a hierarchical neural network to determine whether a patient satisfied selection criteria or not.
Author(s): Xiong, Ying, Shi, Xue, Chen, Shuai, Jiang, Dehuan, Tang, Buzhou, Wang, Xiaolong, Chen, Qingcai, Yan, Jun
DOI: 10.1093/jamia/ocz099
Identifying patients who meet selection criteria for clinical trials is typically challenging and time-consuming. In this article, we describe our clinical natural language processing (NLP) system to automatically assess patients' eligibility based on their longitudinal medical records. This work was part of the 2018 National NLP Clinical Challenges (n2c2) Shared-Task and Workshop on Cohort Selection for Clinical Trials.
Author(s): Chen, Long, Gu, Yu, Ji, Xin, Lou, Chao, Sun, Zhiyong, Li, Haodan, Gao, Yuan, Huang, Yang
DOI: 10.1093/jamia/ocz109
Active Learning (AL) attempts to reduce annotation cost (ie, time) by selecting the most informative examples for annotation. Most approaches tacitly (and unrealistically) assume that the cost for annotating each sample is identical. This study introduces a cost-aware AL method, which simultaneously models both the annotation cost and the informativeness of the samples and evaluates both via simulation and user studies.
Author(s): Wei, Qiang, Chen, Yukun, Salimi, Mandana, Denny, Joshua C, Mei, Qiaozhu, Lasko, Thomas A, Chen, Qingxia, Wu, Stephen, Franklin, Amy, Cohen, Trevor, Xu, Hua
DOI: 10.1093/jamia/ocz102
Neural network-based representations ("embeddings") have dramatically advanced natural language processing (NLP) tasks, including clinical NLP tasks such as concept extraction. Recently, however, more advanced embedding methods and representations (eg, ELMo, BERT) have further pushed the state of the art in NLP, yet there are no common best practices for how to integrate these representations into clinical tasks. The purpose of this study, then, is to explore the space of possible [...]
Author(s): Si, Yuqi, Wang, Jingqi, Xu, Hua, Roberts, Kirk
DOI: 10.1093/jamia/ocz096
The study sought to explore to what extent geolocation data has been used to study serious mental illness (SMI). SMIs such as bipolar disorder and schizophrenia are characterized by fluctuating symptoms and sudden relapse. Currently, monitoring of people with an SMI is largely done through face-to-face visits. Smartphone-based geolocation sensors create opportunities for continuous monitoring and early intervention.
Author(s): Fraccaro, Paolo, Beukenhorst, Anna, Sperrin, Matthew, Harper, Simon, Palmier-Claus, Jasper, Lewis, Shôn, Van der Veer, Sabine N, Peek, Niels
DOI: 10.1093/jamia/ocz043
This article presents a novel method of semisupervised learning using convolutional autoencoders for optical endomicroscopic images. Optical endomicroscopy (OE) is a newly emerged biomedical imaging modality that can support real-time clinical decisions for the grade of dysplasia. To enable real-time decision making, computer-aided diagnosis (CAD) is essential for its high speed and objectivity. However, traditional supervised CAD requires a large amount of training data. Compared with the limited number of [...]
Author(s): Tong, Li, Wu, Hang, Wang, May D
DOI: 10.1093/jamia/ocz089
Clinical genome sequencing laboratories return reports containing clinical testing results, signed by a board-certified clinical geneticist, to the ordering physician. This report is often a PDF, but can also be a paper copy or a structured data file. The reports are frequently modified and reissued due to changes in variant interpretation or clinical attributes.
Author(s): Venner, Eric, Murugan, Mullai, Hale, Walker, Jones, Jordan M, Lu, Shan, Yi, Victoria, Gibbs, Richard A
DOI: 10.1093/jamia/ocz107
Our objective is to develop algorithms for encoding clinical text into representations that can be used for a variety of phenotyping tasks.
Author(s): Dligach, Dmitriy, Afshar, Majid, Miller, Timothy
DOI: 10.1093/jamia/ocz072
Case management programs for high-need high-cost patients are spreading rapidly among health systems. PCORNet has substantial potential to support learning health systems in rapidly evaluating these programs, but access to complete patient data on health care utilization is limited as PCORNet is based on electronic health records not health insurance claims data. Because matching cases to comparison patients on baseline utilization is often a critical component of high-quality observational comparative [...]
Author(s): Smith, Maureen A, Vaughan-Sarrazin, Mary S, Yu, Menggang, Wang, Xinyi, Nordby, Peter A, Vogeli, Christine, Jaffery, Jonathan, Metlay, Joshua P
DOI: 10.1093/jamia/ocz097