Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.
Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question.
Author(s): Bergquist, Timothy, Schaffter, Thomas, Yan, Yao, Yu, Thomas, Prosser, Justin, Gao, Jifan, Chen, Guanhua, Charzewski, Łukasz, Nawalany, Zofia, Brugere, Ivan, Retkute, Renata, Prusokas, Alidivinas, Prusokas, Augustinas, Choi, Yonghwa, Lee, Sanghoon, Choe, Junseok, Lee, Inggeol, Kim, Sunkyu, Kang, Jaewoo, Mooney, Sean D, Guinney, Justin, ,
DOI: 10.1093/jamia/ocad159